LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - NOVEMBER 2015
PH 1818 - ELECTRODYNAMICS

Date: 05/11/2015
Dept. No. \square Max. : 100 Marks

PART A

Answer ALL questions:
$10 \times 2=20$ marks

1. Show that potential obeys the superposition principle.
2. Establish Ampere law in differential and integral form.
3. What are the laws of geometric optics?
4. State Poynting's theorem.
5. A muon is travelling through the laboratory at three-fifths the speed of light. How long does it last?
6. How do you define a four vector?
7. Give the Abraham-Lorentz formula for the radiation reaction force.
8. Define radiation zone.
9. Write a short note on Hall Magnetohydrodynamics
10. What is cut-off frequency with reference to a waveguide?

PART B

Answer any FOUR questions:
$4 \times 7.5=30$ marks
11. Find the field outside a uniformly charged solid sphere of radius R and charge q.
12. Derive expressions for energy and momentum of electromagnetic waves
13. Combine the electric and magnetic field in to a single entity the Field tensor F^{v}.
14. What are Lienard-Wiechart potentials? Derive expressions for the same.
15. Show that a coaxial transmission line of inner and outer radius a and b respectively admit waves with $\mathrm{E}_{\mathrm{z}}=0$ and $\mathrm{B}_{\mathrm{z}}=0$.
16. Prove that the retarded potentials satisfy Lorentz Gauge condition.

PART C

Answer any FOUR questions:
$4 \times 12.5=50$ marks
17. State and prove first and second uniqueness theorems.
18. What is Gauge transformation? Explain Lorentz Gauge and Coulomb Gauges
19. (a) Define invariant interval between two events and hence explain time like, space and light like events. (b) Event A happens at point $\left(X_{A}=5, Y_{A}=3, Z_{A}=0\right)$ and at time t_{A} given by $\mathrm{ct}_{\mathrm{A}}=15$. Event B occurs at $(10,8,0)$ and $\mathrm{ct}_{\mathrm{B}}=5$. Both are in system S . What is the invariant interval between A and B. (c) Two events occurring at the same place in an inertial frame are separated by a time interval of four seconds. What is the spatial difference between these two events in an inertial frame in which the events are separated by a time interval of six seconds?
20. (a) Find the retarded potentials $V(\mathbf{r}, \mathrm{t})$ and $\mathrm{A}(\mathbf{r}, \mathrm{t})$ of a point charge moving with constant velocity. (b) In an infinite straight wire the current $I(t)=0$ for $t \leq 0$ and $I(t)=I_{0}$ for $t>0$, if a constant current I_{0} is turned on abruptly at $\mathrm{t}=0$, find the resulting electric and magnetic fields.
21.Obtain the general expression for electric and magnetic field components for a EM wave propagating along the z -axis of a waveguide.
22.Outline the theory of multipole expansion of electrostatic potential in powers of $\frac{1}{r}$.

